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ABSTRACT

Suppose {X,j is a p -th order autoregrusive process with innovations

in the domain of attraction of a stable law and the true order p unknown.

The estimat of p, , is chosen to minii, Akaike's Information Criterion

over the integers 0, 1,. .. , K It is shown that P' is weakly consistent and

the consistency is retained if K -+ im as N-*@. at a certain rate

depending on the index of the stable law.
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0. Introduction

Consider a stationary p -th order autoregressive (AR(p)) process {X, }:

X, = -+ 2x_2 + '". +px -P+e

where {e, } are independent, identically distributed (i.i.d.) random variables. The

parameters 0, ,..., OP satisfy the usual stationarity constraints, namely all zeroes of the

polynomial

Zp - I P P
j=1

have modulus less than 1.

Now assume that the true order p is unknown but bounded by some finite constant

K (N). Our main purpose here will be to estimate p by P where P will be obtained by

minimizing a particular version of Akaike's Information Criterion (AIC) (Akaike, 1973) over

the integers {O, 1 ,.... , K (N)}. Because we should be willing to examine a greater range

of possible orders for our estimate as the number of observations increases, it makes sense to

allow K (N) to increase with N. In the finite variance case with K (N) K , AIC does not

give a consistent estimate of p ; in fact, there exists a nondegenerate limit distribution of p

concentrated on the integers p, p + 1, ... , K (see Shibata, 1976).

It should be noted that AIC is a very general procedure which applies to a variety of

statistical models. In general, for a given statistical model Ob with k-dimensional

parameter vector b , AIC is defined as follows:

(b)= -2 A(b) + 2 k

where A(b) is the maximized log-likelihood for the model f b . However, in the time

I P
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series literature, AIC is usually defined in terms of a Gaussian likelihood; so for a k -th order

autoregressive model, we will define AIC as follows:

O(k) = N In a2(k)+2k

where a2 (k) is the estimate, i' innovations variance obtained from the YW estimating

equations. We will choose as oui stirnate of p the order which minimizes O(k) for k

between 0 and K, that is,

j=arg mi 40(k)

In the case where two or more orders achieve the minimum, we will take the smillest of

those to be our estimate.

For certain reasons, we may also want the autoregressive parameters to vary (with N)

over some region of the parameter space. For example, consider the following hypothesis

testing problem:

H :X. = e.

versus

H. : X. is a nondegenerate autoregressive process.

We can consider a sequence of local alternatives { H r ) } converging to H0 in the sense

that all the AR parameters converge to zero and then investigate the power of AIC as a

statistical test.

The set of parameters which obey the stationarity condition is a complicated region in

R P, (although the closure of this region is a compact set in R P ). However, it can be shown

(Barndorff-Nielsen and Schou, 1973) that there exists a one-to-one continuous mapping
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between the set of O's and the set of the first p partial autocorrelations

{(p ," p):p c- (-1,1) for j =1 ... ,p}. Thus one can parametrize an AR(p)

process by its p partial autocorrelations, each of which may vary freely in the interval

(-1,1). Moreover, one can show that for an AR(p) process, p P = 3,,. For autoregressive

order selection, the p-parametrization is somewhat more natural than the 1-parametrization.

That is, the "distance" between two autoregressive models with different orders is more

easily seen in the p-parametrization.
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L Infnite variance autoregreon

We will be interested in the case where the innovations {e, } are in the domain of

attraction of a stable law with index a a (0,2). If E (I e. < - then we will assume that

E(ex)=0.

Recall that given observations X1 ,..., XlV and known order p, it is possible to

consistently estimate the AR parmeters O3 13p. In fact for LS estimates

betahaub I,..., , where I p:
aJ.

N/(pk0 )-p3) -. 0 for 8>a

where PA: = 0 for k > p. For YW estimates, a slightly weaker result holds: convergence to

0 is in probability rather than almost sure.

We may also wish to consider AR models of the form

X,, - 9 = 0 1(X,,_-.I  )+ .. + , (x*.+O , -IL)+X +

where .L is unknown and we retain the same assumptions on the '3k s and {e,, }. It can be

shown (Knight, 1987) that if we center the observed series by subtracting the sample meanX

(i.e., X,=X. -i) and estimate P, ... p via the YW equations (using X',

nfl....,N), we will still have N /( k-t ) - 0 for 8 >max(1,c) and the

convergence is almost sure for LS estimates. More generally, we can center the observed

series by subtracting any location estimate i and estimate the p's using the centered series.

Depending on the precise convergence properties of IL we may be able to obtain the full rate

of convergence for the estimates of the AR parameters (Knight, 1987).
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As stated earlie, we will want to vary the autoregresive parameters with N. For this

reason we will consider a triangular arry of random variables

where each row is a finite realization of an AR(p) process:

iui

The corspnin triangula arry of innovations, { ef% }IN. consists of row-wise

indpen1dent rnidom variables sampled from a common distribution which is in the domain

of attraction of a stable law. Given a single Lid. sequence e{ e,, we could construct each

element of the triangular ay as follows:

We will require that ONl) p(pr),..,) ) aresuch that (N) .. (N))ar

contained in a closed (and hence compact) subset of (- 1,1)' for all N . Since

-PP , we can attempt to shrink P(N to zero as N goes toinfinity and tryto

consistently estimate p at the same time. (In the testing setup mentioned earlier, this would -

correspond to AIC providing a consistent test under a sequence of local autoregressive

-L I W U'*- '' A Vi -
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alternatives.) Intuitively, it would seem that the smaller I I3,~'! I is, the more difficult it
PL

should be to distinguish between a p-th order and a lower order AR model. From

simulations, this does seem to be the case. This is the real motivation for allowing the

parameters to vary with N. Consider the following example. Suppose we observe a p -th

order AR process which has pp very close to zero (say pp =0.1 ). To estimate the order

of the process, we use a procedure which we know to be consistent. So for N large enough,

we will select the true order with arbitrarily high probability. However, for moderate sized

N , the probability of underestimating p may be very high. Conversely, if I pp I is close

to 1, than even for small N there will be high probability of selecting the true order. So by

allowing p, = AP to shrink to zero with N, we may get some idea of the relative sample

sizes needed to get the same probability of correct order selection for two different sets of

AR parameters. If we view order selection as a hypothesis testing problem (say testing a null

hypothesis of white noise versus autoregressive alternatives), shrinking OP to zero is

similar in spirit to the sequence of contiguous alternative hypotheses to a null hypothesis

considered in Pitman efficiency calculations.

We should note that the partial autocorrelations do not have their usual finite variance

intapretation; however, they can be unambiguously defined in terms of the regular

autocorrelations which themselves can be unambiguously defined in terms of the linear

process coefficients. (see Davis and Resnick, 1985) Moreover, the partial autocorrelations

can be estimated consistently by recursive YW estimates just as in the finite variance case.

If we include unknown location, g, in the model, we will assume that it does not vary

with N. To have p. vary with N does not really make a lot of sense since it is, in a sense,
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a nuisance parameter in this situation.

We will provide an answer to the following question: under what conditions (if any) on

K (N) and ( N will AIC provide a consistent estimate P of p ? Bhansali

(1983) conjectures that AIC may provide a consistent estimate of the order of an

autoregressive process based on the rapid convergence of parameter estimates. However, he

seems to conclude, from Monte Carlo results, that this may not be the case. If K (N) is

allowed to grow too fast then we may wind up severely overfitting much of the time; for

example, p could equal K (N) with high probability.

IM

t

I.
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The main result of this paper is contained in Theorem 7; the first six results provide the

necessary machinery for Theorem 7. W; begin by stating two results dealing wi the

moments of martingales and submartingales.

Theoremi. (Esseen and von Bahr, 1965) Let S. = 4. If E(X. I S. )0 for
k=1

2<n<N andX. eL' for ir<2 then

SE(S r) 2 N E(IX I ).
M=l

(Note that {S, , a(S); n > I } is a martingale.)

Theorem 2 (c.f. Chung,1974 p.346) If {X,, , c(X,) ;n k 1} is an Lr -submartingale for

some r > I then

o E lmax < E(IXN IT)

The following lemma will allow us to ignore the dependence on N of the moments of

{X5r ) I by virtue of being able to bound the moments over any sequence of admissible

parameters within a compact set.

Lemma 3. Let {X. (PI)} be a stationary AR(p) process with parameter 03 and innovations

{e,, } in the domain of attraction of a stable law with index ax. Let C be a compact set of

the parameter space. Then for all 0 << c,

sup E X, ( 1
p* C -
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Proo. X. (c)= , c1 (J)e, j where c, (P) is a continuous function of 3 for all j.j=0

Now

j=0

. I e._jI
j=O

where a, =sup I cj(P)• However, it can be shown that al CjP x j where

1<and so I ajI<o. for all y > O. Under this summability condition, it
j=0

follows from Cline (1983) that the random variable

X Z Laj I e,
j=0

is finite almost surely with

= P(X>xl = - < 00

S--0- P[ le, I >X ] j=0

This implies that E (X 8) is finite for all 0 < 8 < a and the result follows. 0

The following lemma will allow us to treat moments of F X. the same as the

moments of Ye. when a > I.

Lemma 4. Let {X, } be a zero mean stationary AR(p) process with innovations {e, } in

the domain of attraction of a stable law with index a > 1. Then for any 1 < r < a,

PIIIIIIII ID IS I ~ A W M * P ' ~
K I I I , II I! I III
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(a) E[ F, r O(N)

(b) E max Xn =0(N).

Proof.

N Nr
-I- ex =IkXflk

R=l M=l k=1 J

=[1- P X, + RN

N-RN

whereC= I -
m  Thus by Minkowsi,'s Inequality,

E- N 5 + CE[ IRNI

x =- I I l

and part (a) follows from Theorem I by noting that E[ IRNI] = 0 (N). (It can actually

be shown to be o(N) by using a uniform integrability argument.)

Part (b) follows similarly from Theorem 2 by noting that

max xN C max en +C CRN

n=1 A=mN
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and using Minkowski's Inequality.

The following theorem deals with uniform convergence of both LS and YW

autoregressive parameter estimates in the case where location is known.

TheoremS. Assume imown location g. Let K(N)=O(Na) for 8< 2- 2a and let 11vi2

denote the Euclidean norm of the vector v. Then
p

(^a) ;N/ max -+ 0 where O a0 for k >p.
p<lK(N) -

p(b) '" max + 0(.)-13(l)il - 0.
IstSK(N) -

Note that the vectors are not fixed length but may vary with N.

Proof. (a) The style of proof will mimic Hannan and Kanter (1977). For convenience we

suppress the notation indicating the dependence of {X, }, {e, } and A on N. For I > p

the LS estimating equations can be reexpressed as follows:

el (0(')-) = *

N
where r,(j)= e'X j . Fix 8< 2A and set K=K(N)=O(N ). For each

Rf1+1 2

1, C is non-negative definite and so it suffices to show that for some K < 2,

*Lj P

p
(i) max N lt I 0

(ii) rin min N -v" C v -4 00p~L. K IIvIN=

P

where K =K(N). If(i)and(ii) hold then clearly 47" max II0(1)-1311 -. 0.
p S I SK - -

- r P-?'w &e



-12-

To prove (i), it suffices to show that

EN [ E max N1 - 12,., 2 0 -

for some y < -T

Now

EN s 2,N- £ma ],,_

K N N

EN 1 N (' - 20YV EN~ -I. YN.2 exxxj "

j= l ,.,r -

KI1Y 'V12

YN(-"Emax e, X, j I -$n-j i

j- ISS B I I I

+ KN~i 2 ) 2 E max 12 /2Ej N /

[1 11/ enn- j -X
KSS 1~

K N1' 2ry tV, j+ WNJ + 2 VIVjWNV"

j-1-

If 2y < I then by the so-called c,-inequality

, I eX 3. 12y] (K(N))
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uniformly over j between 1 and K (N).

If 2y z I then t > I and so Sk, = X.,_j is a martingale for each j. Hence
R=1

St, I is an L.2y-submartingale and so by Theorems 1 and 2,

,j C E (I SKj 12 92C KEIeX, j ~1Y 0 (K(N))

uniformly over j.

Similarly it can be shown that for all permissible values of y, WN,, = 0(N) uniformly

over j between I and K(N). Thus for a given sequence K(N)=0(N 8 ) by taking K

sufficiently close to 2 and y sufficiently close to -, we will have

E max N2 eX _j =j ,t r =1l ,=,+lI

as desired.

To prove (ii), we define X.., ex as follows.

K
Xn,v = t vX -t

kal

K
en,V = Vte ,

with Vk = 1. It suffices to show
k-kul

mm(KX,2v}..~
- - f -~ ,=K +I n.
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Now note that X., v m-j + ex By the triangle inequality,
j=1

N'KN 2v 2 f-1 [p' ]2 12_ 2 '2
t =~ =+k n=K+1

Now

j 7 N 2,.n~~
n=K+1 k=1 j=1 k=1 nz=K+l

= t3? N.K I Xft +o(0
j=1 k=1 n=K+l

Itremains only toshowthat N-r Fe!., -+ oa. Ifthis is truethen

2 P
NK I: XI, 00 since the Probability that this quantity stays bounded clearly must tend

to zero.

n=~lnu=K+1{k=1 S<S

NOW

N K 22 =K N 2

n=K+l kun 1kA- K+l

K V2N-K 2
I Vk I

k=1 m=4+1

N-K 2
E en

n=K+1
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Thus

NRK+ I u

since

N-cN-K e2 P'

n=K+I

Thus we need only show that

N p
N-cYv Vt x -j n- -+ 0

n=K+1 1T.jckK

Now

NV -MVt j x j Ik Iki N ,_
k=2 j= .=K+I k=2 j=1 n=K+l

Now take y < a and note that jk. If y < 1 thenE 'v 8k :E[ ']e,
YE e _j3e E : I[.e.I1J = O(N)

If y k 1 then necessarily a > 1. Thus S1*= Y coj e. ks an Lr-martingale and

E 1 e,ek j = 0(N)

uniformly over j k by Theorem 1.
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since I kIl fak

(b) Fromthe definitionsof ,a) ,-r and ,it is asytoseethat

(la) TN a max Ieg(i,i)-,(i,)- <
l':l.J li~j$ n~l n=N-K+1

and

Thus using equations (la) and (Ib), we have

(2a) N- KTN =o% (N- )

(2b) N-" SN = o (N-)

for i < Now using some elementary facts about vector and matrix norms and equations
a

(2a) and (2b), we get

(3a) max N-K i , -Cl1 = o.(K(N)W- ) = o,(1)

and

(3b) max N -  IIf1 -i.l r (K(N) 1/ 2N-) -

V.:

where the matrix norm is that which corresponds to the Euclidean vector norm.

Ile

r .j * * ~ ~ .~., ~%
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Now from the definitions of 0(1) and 0(t), we get

uniformly in I by equation (3b). Finally we must show that the minimum eigenvalue of

N-v d, tends in probability to infinity uniformly in 1 since I(N - C )=H is (in the

case of symmetric positive definite matrices) merely the reciprocal of this minimum

eigenvalue. Note that for unit vectors v

N-1c v = N-K v" v + N-" v(e t -C4 )4
p

aN -K v v - N - ' Ilie -ill -.

uniformly over I and unit vectors v by condition (ii) of the proof of part (a) of this

term and equation (3a) above. Therefore

~+ 0

as required.

In the case where we have an unknown location pamneter and we estimate it with some

location estimate t, we can obtain the following corollary.

Corollary 6.

1. If OP-)2 = 0, (NY) for yS min - -- L+ uniformly over all

compact subsets of the parameter space, then Theorem 5 still holds. For a > 1, X

satisfies this condition.

2. If al and jiX and K(N)=O(N 6 ) for 8 <- thenconclusions (a) and (b)of

Theorem 5 hold.

A'. m.' - %. '. % ~ -,



Proof. 1. (a) Assume without loss of generality that gi = 0. We can again reexpress the LS

estmting equations as follows:

wherenow

If(i ,j) = (X3..8 LaXX...j -aL)

and

111+ -tha J Jx

By similarmethods to thoucusd in the pmofof Ieom , it iseasy to show that for some

2

maxN -I, -0.

(Mme term involving 1: -.j is ktilled using I=mm 4.)

In addition, using the conditions on I,

N"'v-KN~i'-4+0.

Finally, it follows easily that

min min NKv~f4v p
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(b) Defining TN and SN analogously to the proof of Theorem 5, we again get that for

2

NK"TN = o.(N)

and

WK'SN = o.(N I

and the rest of the proof follows as in the proof of Theorem 5.

2. Everything follows from the fact that for any 0 <8 < az,

E iaxZ Xn] 0O(N)

which implies that

2-

N'4KK(N)L4max ,,= 4' ]
N4

and conclusions (a) and (b) follow directly from this. 0

Theorem 7. If lirn inf N I PP(N) 12,> 2p and conclusions (a) and (b) of Theorem 5 hold
Nv-+-

* for sonic K(N) then

p

-P.

LM5
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P
Proof. First we note that since P is integer-valued, p -4-p is equivalent to

P[jb=p--l(asN-.+oo). From her on, wewillreferto K(N) as K andto 0( N) as

Pk thus suppressing the dependence on N.

Moreover we will assume that the observations X, are already centered; that is, we have

subtracted out the location estimate aL (if we are assuming unknown location).

We now use the fact that

t j2(k) -- &()fl(1- ()) for k 2 I
L=1-

where x2(0)= - 2 and p3(I) is the YW estimate of Pk (l!k </) in an

Mal

AR(/)rmdeL Now P[P <plSP[ min (k)!(p)].
OSkcp

since
P--.

mm ,(k) 2 N Iln(,- 30(j)) + N Ln (0),

we can write

pP p [ In(, _ 2 ,))>- _2P]IN

- p[(_ p2 ))> ep(-2p /N)]

:5 P[N 02 (p)!g2p]

However,

N 0p ) =i (,, -I3PI + o,,(l))2

and so

'I ' "'¢" 'P3 -. 'rY" T' ' %%%°5%SS. :'" : "',' '% %."- .' ""-="-
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lm SUPp[N 02(p):52p] =0

since lim inf N)I >4W . Thus P p 0.

We also have that

P[ P>pj]P[O(k)<(k-l) for some p <kSK]

If the conclusions of Theorem 5 hold, it follows tha

040

and hence

N Min In(l_-(k)) AI o

Therefore, Pb> p j -+0.

ThusP[P p] -+0 andso P[P=p.-+I which implies that --+p. 0

The "pracical" implication of this themem is that if N is large, with high probability

P will equal p provided that I P I is not too small with respect to N. Or in other

words, for fixed (but large) N, the probability of selecting the correct order decreases as

O P, [ decreases. Finite sample Monte Carlo results seem to bear this out.
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3. Simulation results

For illustrative purposes, a small simulation study was carried out using four symmetric

stable innovations distributions with a = 0.5, 1.2, 1.9 and 2.0 (the latter being the normal

distribution). The underlying processes were AR(1) processes with the AR parameter

J[=0.1 ,0.5 and0.9. The sample sizes considered were 100 and 900. For N = 100, the -

maximum order K was taken to be 10 while for N = 900, K was taken to be 15. 100

replications were made for each of the 24 possible arrangements of a, 13 and N. The results

of the study are given in Tables I through 8.

Estimated AR parameter

order 0.1 0.5 0.9
0 89 0 1
1 4 91 87
2 4 3 2
3 0 1 1
4 1 0 0
5 0 3 2
6 1 1 2
7 0 0 3

8 0 0 1
9 1 1 0
10 0 0 1

Table 1: Frequency of selected order for AR(1)
process. N =00 a=0.5

I-
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Estimated AR parameter
order 0.1 0.5 0.9

0 0 0 0
1 93 95 91
2 0 0 0
3 0 0 1
4 0 0 0
5 0 0 0
6 0 0 0
7 4 0 0
8 1 5 2
9 0 0 1

10-15 2 0 5

Table 2: Frequency of selected order for ARM1
process. N = 900 cx = 0.5

The results are much as expected. We can see that for N= 100 and 1 =0.1 AIC

underestimates the true order with high probability. For N = 900, the probabilities of

selecting the true order increases over those for N = 100.

Estimated AR parameter
order 0.1 03 0.9

0 70 0 0
1 15 86 86
2 7 7 4
3 3 3 3
4 1 1 3
5 0 1 1
6 0 0 0
7 2 0 2
8 2 1 1
9 0 1 0
10 0 0 0

Table 3: Frequency of selected order for AR(1)
process. N = 100 a = 1.2
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Estimated AR parameter
order 0.1 0.5 0.9

0 0 0 0
1 80 87 90
2 6 3 3
3 6 0 1
4 1 4 3
5 1 2 0
6 0 0 0
7 2 2 1
8 1 0 0
9 0 0 0

10-15 3 2 2

Table 4: Frequency of selected order for AR(1)
process. N =900 ct= 1.2

Estimated AR parameter
order 0.1 0.5 0.9

0 57 0 0
1 25 76 71
2 5 8 10
3 2 5 9
4 3 6 6
5 2 1 2
6 3 1 0
7 1 1 1
8 1 0 0
9 0 0 1
10 1 2 0

Table 5: Frequency of selected order for AR( 1)
proCcSs N 100cL=1.9

1. V

Ilk-~ M,*~
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Estimated AR parameter
order 0.1 0.5 0.9

0 S 0 0
1 78 74 75
2 7 14 9
3 2 2 7
4 2 5 2
5 1 1 2
6 1 1 0
7 3 1 3
8 0 0 0
9 0 0 1

110-15 1 1 2 11

Table 6: Frequency of selected order for AR(1)
process. N =900 a =1.9

Estimated AR parameter
order 0.1 0.5 0.91

0 63 0 0
1 25 75 75
2 4 3 12
3 1 6 2
4 0 7 5
5 2 2 2
6 2 4 3
7 1 0 0
8 1 1 1
9 0 2 0
10 1 10 0

Table 7: Frequency of selected order for AR( 1)
process. N =100 Normal distribution
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Estimated AR parameter
order 0.1 0.5 0.9

0 0 0 0
1 83 79 80
2 3 3 11
3 4 4 3
4 4 6 0
5 2 3 3
6 0 0 0
7 0 4 0
a 4 1 1
9 0 0 2

110-15 H 0 10 10

Table 8: Frequency of selected order for AR( 1)
process. N =900 Normal distribution

4'A
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4. Comments

Bhansali and Downham (1977) propose a generalization of AIC. They propose to

minimize 0'(k) = N In 62 (k) + yk where y e (0,4). It is easy to see from the proof of the

above result that their criterion will also lead to consistent estimates of p under similar

conditions on K(N) and (N). In fact, if y =y(N) >0 satisfies y(N)/N --->0, then the
p

criterion corresponding to 0"(k) = N In Z12 (k) + y(N) k will consistently estimate p.

Specifically, with known location, the estimate will be consistent provided

1iMinf N >3 12

N --+ ,( ) >

with y(N) bounded away from zero and with the same conditions on K(N). With an

appropriate choice of y(N), this criterion will also be consistent in the finite variance case.

However if y(N) grows too quickly with N then the criterion may seriously underestimate

the true order p in small samples in both the finite and infinite variance cases. In an

application such as autoregressive spectral density estimation (assuming now finite

variance), underestimation is more serious than overestimation since, if the order is

underestimated, the resulting spectral density estimate may be lacking important features

which may indeed exist.

Itq
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